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Low -Order Approximations 
for the Normal Probability Integral 

and the Error Function 

by David G. Carta 

Abstract. Rational fractions of the form 0.5/(a + bx + ... )2q are used to evaluate 
the function of interest. Polynomials of from third to sixth order are derived which 
achieve absolute errors ranging from 0.01 to 0.000001 for all (real) positive x, and 
relative errors of from 0.1 to 0.00001 for (real) positive x less than 3.1, 4.0, and 5.2. 
Denominator coefficients are calculated by linearizing the rational fraction about 
progressively improved nominal solutions and using linear programming to solve the 
resulting linear minimax problems. 

I. Introduction. In the course of deriving rapidly executable approximations 
for a real-time processing application [1], it became necessary to find a low-order 
method for evaluating the normal probability integral* 

(1) Q(x)= 1 f 
exp(-t2/2)dt. 

A review of the literature yielded only one approximation suitable for low-order 
application. This was of the following form from Hastings [2]: 

Q(x) = 0.51(1 + c1x + c2x2 + c3X3 +c 4X4)4 + e(x), 
(2) 

le(x)l < 0.00025, 0 S x < oo. 

While this approximation was not entirely suited to our needs, the reciprocal poly- 
nomial form of the approximation seemed eminently well chosen. All approximations 
developed in this paper will be of a similar form: 

(3) Q(~~~X? C)-=0.51(c, + c,x + ...+ c nxn ) 

Note the added flexibility of a variable first coefficient, as opposed to the fixed value 
of unity by Hastings. 

After the two or three required approximations were generated for the real-time 
processing application, it was realized that with little additional expense, an entire 
range of low-order approximations could be generated. This paper presents the results. 

For other, more general forms of rational approximations, the reader is referred 
to Hart, et al. [3]. 

Received September 9, 1974. 
AMS (MOS) subject classifications (1970). Primary 33-04, 33A20, 65D20; Secondary 41A20, 

65D1 5. 
* The error function erf(z) m (2/v4i) f. e tdt is related to the normal probability integral 

by erf(z) = 1 - 2Q(zli). 
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2. Method. The objective is defined as the following: Find coefficients c= 

(cl, . . ., c,) such that 

Q(x, c) - Q(x) 
(4) axE w(x) 

is a minimum. For w(x) = 1, the maximum absolute error is minimized; for w(x) = 

Q(x), the maximurn relative error is minimized. 
The problem was approached in the following manner: First, the minimax 

criterion was loosened to hold over a discrete set xi E , i = 1, . . ., m. An interval 
of approximation was then selected along with an appropriate set of xi, 

The objective can then be stated as: Find c = (cl, . . ., c,) such that e is a 

minimum where 

(5) Q(Xk, C) Q(Xk) < k= 1, 
W(Xk) 

3. Solution. Suppose we have a nominal solution co to the above problem. 

Then by linearizing Q(xk, c) about this nominal solution and noting that w(xk) > 0, 

we obtain 

n ai(Xk, IC0) - 

(6) E|c1e ac. + Q(xk, c0) - Q(Xk) < w(xk)e, 

where 5c. = c. - c. As suggested by Rabinowitz [4], we rewrite (6) as the following 

two sets of inequalities: 

(7) E c a +Q(k C ) Q(Xk) 6- W(Xk )e.. k = 1,...,m 

(8) [+ Q(xk, CO)-Q(Xk) >-w(xk)e, k = 1, . . ,m 

Equations (7) and (8) can be thought of as a linear programming problem in the 

n + 1 variables (6c1, . . . , 6c,n, e), the objective function being to minimize e. When 

a solution 6c is found, (6) is re-evaluated using the improved nominal value c(l) = cO + 

6c. Since the choice of the nominal value c? was very close to the true value, con- 

vergence was always rapid, taking no more than three to five iterations. The iterations 

were terminated when all changes in coefficients were less than 10- '. 

We now discuss the manner in which co was chosen with a simple example. If 

we choose the approximating function Q as follows: 

(9) Q(x, c, d) = 0.51(c + dx)r, 

then Eq. (5) can be written as 

(10) -wke S 0.5/(c + dxk)r - Q(xk) wke 
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or 

( 1) Q(xk) 
- 

Wke < 0.5/(c + dXk)r < Q(xk) + Wke. 

Note that since Q(xk) is relatively large and positive and e small, both the left and 
right hand members of the above inequality will be positive. Raising each member 
of (11) to the (- I/r) power, we obtain 

(12) [Q( - el- > (0.5)-h/r(C + dxk)> [Q(xk) kel 

By using the binomial expansion to first order of the left and right hand members of 
(12) and multiplying all members by (0.5)1/r, there results 

0.5 
1 Ir w ke\ 05 1/r/ wk 

(13) (Q( ) 1+ Q > c + dx> k)(1 -Q( )J 

Inequalities (13) are linear in c, d, and e; and as before for 6c, we can use linear 
programming to find a solution which minimizes e. 

4. Results. Approximations were derived for the n in Eq. (3) varying from 3 
to 9 and q varying from 0 to 6. The resulting minimum errors are presented in Figs. I 
through 4. Indicated are the fit criterion used (minimum absolute error and minimum 
relative error) and the range of validity of the approximation. The value of n can be 
read off the bottom of the figure, while the q values can be found above the data 
points. For comparison, methods which require approximately the same amount of 
computational effort (multiplications) are connected by lines. The optimal approxi- 
mation for a given amount of computation will then be found at line minimums. This 
method of display is due to Hastings [2]. 
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Figure 1. Absolute Error Criterion Figure 2. Relative Error Criterion 
Range: O x<4 Range: O'x'3.09 
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minimums with errors2close to the minimums, as these approximations require one 

Figpurea3.oRelative Errore Crditerwion Fnraingurhe 4Relativsoewht ErrroCiteio 

The e approximations w hich yie lotd the minimu errors, dheshycrib aed abveavreapre 

minimums w Th eror 1.Close tofhcienimums asr these apoximation s reur onei 

over 0 ' x < . (Absolute Error Minimized) 

N=4 Q=0 N=4 Q=0 N=4 Q=1 N=4 Q=1 N=4 Q=2 
ABS ERR=8.89 E-3 ABS ERR=1.13 E-2 ABS ERR=3.04 E-3 ABS BR=3.22 E-3 ABS ERR=1.07 E-3 

0.98326277E-0 1.02276817E-0 0.99702758E-0 1.00055503 E-0 0.99947268E-0 
013447918 E14 0.68874886E-0 0.48032748 E-0 0.45095789E-0 0.21268088 E-0 

-0.15765831 E+1 0.0 -O.50749808E-1 0.0 0.55642184E-1 
0.25263428 E,1 0.16777473 E+1 0.35180598 E-0 0.32985306 E-0 0.54262629 E-1 

N25 Q=1 N=5 Q=2 N=5 Q=2 N=5 Q=3 
ABS ERR=8.79 E-4 ABS ERR=2.23 E-4 ABS ERR=2.31 E-4 ABS ERR=6.52 E-5 

1N00086821 E-0 1.00010947 E-0 1.00001244 E-0 1.00001431 E-0 
0.36630736 E-0 0.19566657 E-0 0.19670088 E-0 0.99230111 E-1 
0.41183061 E-0 0.11816079E-0 0.11559155E-0 0.47182012E-1 

-0.18627441 E-0 -0.21320100 E-2 0.o 0.50442815 E-2 
0.17767962 E-0 0.20162569 E-1 0.19617429 E-? 0.27727664 E-2 

N=6 Q=2 N=6 Q=3 N=6 Q=3 N=6 Q=4 
ABS ERR=4 .61 E-5 ABS EwRR= 8 .02 E -6 ABS ERR=9 .50 E-6 ABS ERR-i . 2Q E-6 

0.9999772773 E-0 0.9999980543 E-0 1 .0000020249 E-0 0.9999998582 E-0 
0.2004847193 E-0 0.9981881352 E-1 0.9975397369 E-1 0.4987385796 E-1 
0 .92 779 8966 3 E-1 0 .442 329915 3E-1 0 .L44462 83166 E-1 0 .2109 811 045 E-1 
0.4102510451 E-1 0.9807669823E-2 0.9511996161 E-2 0.3372948927E-2 

-0 .7732107617 E-2 -0 .1535053920 E-3 0.0 -0 .5172 897742 E-4 
0.5919110319 E-2 0.5910199800 E-3 0.5638925614E-3 0.8569579420 E-4 
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TABLE 2. Coefficients for Approximations Valid 
over 0 < x < 3. 09 (Relative Error Minimized) 

N=4 Q=2 N=4 Q=3 N=5 Q=2 N=5 Q=3 
REL ERR=6.17 E-2 REL ERR=1.92 E-2 REL ERR=1.25 E-2 BEL ERRe2.65 E-3 

0.98514335 E-0 0.99766167 E-0 1 .00310973 E-0 1 .00033090 E-0 
0 . 37194578 E-0 0.12422288 E-0 0.14518284 E-0 0.94263331 E-1 

-0 .17402 897 E-0 0 .77418010 E-2 0.24306692 E-0 0 .58802 340 E-1 
0.14184265 E-0 0.24195179 E-1 -0.96327447 E-1 -0.33152891 E-2 

0.41493605 E-1 0.45893284 E-2 

N=6 Q=2 N=6 Q=3 N=6 Q=4 N=? Q=3 
REL ERR=2 .27 E-3 REL ERR=3.05 E-4 REL ERR=3.86 E-5 REL ERR=3.63 E-5 

0.9994503392 E-0 0.9999629152 E-0 0.9999975888 E-0 1 .0000043564 E-0 
0.2132836195 E-0 0.1006157723 E-0 0.4992364716 E-1 0.995949160e E-1 
0.4538762171 E-1 0.4144820423 E-1 0.2092978887 E-1 0.4548994791 E-1 
0.1001012612 E-0 0.1309929761 E-1 0.3566148574 E-2 0.7297927613 E-2 

-0.3678315622 E-1 -0.1694672049 E-2 -0.1397344692 E-3 0.2044973272 E-2 
0.1076796149 E-1 0.8365931999 E-3 0.9934962303E-4 -0.2688525816 E-3 

0.1220418799 E-3 

TABLE 3. Coefficients for Approximations Valid 
over 0 < x < 4. 00 (Relative Error Minimized) 

N=4 Q=3 N=4 Q=3 N=5 Q=2 N=5 Q=3 
REL FRB=7.03 E-2 REL EPB=1 .02 E-1 REL ERR=6.42 E-2 REL EBR=1.29 E-2 

0 .99159673 E-0 1 .01343935 E-0 1. 01656534 E-0 1 . 001 59448 E-0 
0.171 57632 E-0 0.10575969 E-0 -0. 29167615E-1 0.78981852 E-1 

-0.40278659 E-1 0.0 0.58796837 E-0 0.86282411 E-1 
0 . 3572 5676 E-1 0.29235914 E-1 -0 . 30295449 E-0 -0 .18542496 E-1 

0.78591661 E-1 0.71540529 E-2 

N=5 Q=4 N=6 Q=3 N=6 Q=4 N=6 Q=5 
REL FRR=3.18 E-3 REL ERR=2. 00 E-3 REL ERR=2.61 E-4 REL ERR=7.04 E-6 

1.00016069E-0 0.99975192 E-0 0.99998392 E-0 0.9999997873E-0 
0.47512354E-1 0.10438503E-0 0.50155550E-1 0.2493389125E-1 
0.25955649 E-1 0.31073947 E-1 0.20321174 E-1 0.1026041229 E-1 
0.0 0.22824383 E-1 0.41149238 E-2 0 .1 386662649 E-2 
0 .87461784 E-3 -0 . 53407894 E-2 -0 . 33900954 E-3 -0. 7799896470 E-4 

0.13078095E-2 0.12443051 E-3 0.1953637532 E-4 

TABLE 4. Coefficients for Approximations Valid 
over 0 < x < 5. 20 (Relative Error Minimized) 

N=4 Q=4 N=5 Q=3 N=5 Q=4 
REL ERR=8. 50 E-2 REL ERR=6 .79 E-2 REL ERB=1 . 52 E-2 

0.99498362 E-0 1 .00867395 E-0 1.00089169 E-0 
0.81690469 E-1 0.11885495 E-1 0.41079083 E-1 

-0.69190469 E-2 0 .18389763 E-0 0 34686804 E-1 
.97932565 E-2 -0.61961072 E-1 -0. 36787667 E-2 

0.12983665 E-1 0.13477384 E-2 

N=6 Q=4 N=6 Q=5 N=8 Q=4 
REL FRR=1 .90 E-3 REL EBB=1 .49 E-4 REL ERR=3.37 E -5 

0.99988413 E-0 0 .99999539 E-0 0 .9999980589 E-0 
0. 51496910 E-1 0.24987778 E-1 0.4992025890 E-1 
0. 17548628 E-1 0 .1 0157429 E-1 0.2091639596 E-1 
0.60787136 E-2 0.14549985 E-2 0.3638516531 E-2 

-0 .89770514 E-3 -0 96395171 E-4 -0.2437065631 E-3 
0.17939420 E-3 0:21261539 E-4 0.1648858949 E-3 

-0.1903371134 E-4 
0.2078875419 E-5 



LOW-ORDER APPROXIMATIONS 861 

with one of the plotted approximations they were included in the tables. 
For most rapid evaluation, the approximations should not be used directly as 

they stand in the tables, but rather, the coefficient of the highest power of x should 
be normalized to unity. Thus, for example, the approximation 

(14) Q(X)' -, ~~~~~0.5 (14) Q(x) (1.000555 + 0.450958x + 0.329853x3)2 

should be evaluated as 

4.5954587 
(15) Q(x) (3.033335 + 1.367148x + x3)2 

which requires one less multiplication. 
Further savings can be obtained by economizing polynomials of degree greater 

than 3. For example, the quartic P(x) = x4 + Ax3 + Bx2 + Cx + D can be evaluated 

by 

(16a) Pi=x(x+a), 

(16b) P(x)= (P1 +x + b)(P +c) +d, 

where 

(17a) a = (A -1)/2, 

(17b) c=C-a[B-a(a+ 1)], 

(17c) b=B-a(a+1)-c, 

(17d) d = D - bc. 

Evaluation of the quartic by (16) requires one less multiplication than the usual nested 

multiplication algorithm at a cost of one extra addition. 
The quintic can be evaluated from the quartic solution by the factorization 

(18a) P(x) = x5 + Ax4 + Bx3 + Cx2 + Dx + E 

(18b) =x(x4 +Ax3 +Bx2 + Cx +D)+E. 

Similarly, the sixth-order polynomial 

(19) P(x)=x6 +Ax5 + Bx4 + Cx3 + Dx2 + Ex + F, 

can be evaluated by the following algorithm: 

P1 = x(x + a), 

P2 = (P1 + x + b)(Pl + c), 

P(x) = (P2 + d)(Pl + e) + f, 

which requires two less multiplications than nested multiplication at the cost of a 

single extra addition. 
Caution is recommended on the use of polynomial economization. Though not 

usually a problem for the approximations derived here, it is sometimes necessary to 
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carry greater precision in the calculation and use of the modified coefficients (a, b, c, 
etc.) than is immediately apparent. For this reason, all coefficients in the tables are 
given to greater precision than needed for straightforward nested multiplication evalu- 
ation. 

The reader is referred to [5], [6], [7], [8] for further information on poly- 
nomial economization. 

5. Conclusion. A number of cost-effective low-order approximations have been 
derived for the normal probability integral by linear programming minimax techniques. 
These approximations are all of the reciprocal polynomial type. Methods have been 
presented for the efficient evaluation of these polynomials. 
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